Region-based 3D Object Tracking


Cremers, D., Rousson, M., Deriche, R., 2007. A Review of Statistical Approaches to Level Set Segmentation: Integrating Color, Texture, Motion and Shape. Int J Comput Vision 72, 195–215.
Bibby, C., Reid, I., 2008. Robust Real-Time Visual Tracking Using Pixel-Wise Posteriors, in: Forsyth, D., Zisserman, A. (Eds.), Computer Vision – ECCV 2008, Lecture Notes in Computer Science. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 831–844.
Hexner, J., Hagege, R.R., 2016. 2D-3D Pose Estimation of Heterogeneous Objects Using a Region Based Approach. Int J Comput Vis 118, 95–112.
Tjaden, H., Schwanecke, U., Schomer, E., 2017. Real-Time Monocular Pose Estimation of 3D Objects Using Temporally Consistent Local Color Histograms, in: 2017 IEEE International Conference on Computer Vision (ICCV). Presented at the 2017 IEEE International Conference on Computer Vision (ICCV), IEEE, Venice, pp. 124–132.
Kehl, W., Tombari, F., Ilic, S., Navab, N., 2017. Real-Time 3D Model Tracking in Color and Depth on a Single CPU Core, in: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Presented at the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, Honolulu, HI, pp. 465–473.
Tjaden, H., Schwanecke, U., Schömer, E., Cremers, D., 2019. A Region-based Gauss-Newton Approach to Real-Time Monocular Multiple Object Tracking. IEEE Trans. Pattern Anal. Mach. Intell. 41, 1797–1812.
Huang, H., Zhong, F., Qin, X., 2021. Pixel-Wise Weighted Region-Based 3D Object Tracking using Contour Constraints. IEEE Trans. Visual. Comput. Graphics 1–1.
Stoiber, M., Pfanne, M., Strobl, K.H., Triebel, R. and Albu-Schäffer, A., 2020. A sparse gaussian approach to region-based 6DoF object tracking. In Proceedings of the Asian Conference on Computer Vision.

研究笔记: SRT3D三维物体跟踪算法研究笔记