刚体动力学
弧度:
\[\begin{aligned} \Delta s &= ({\pi \over {180}}\Delta \theta ^\circ )R \newline \Delta \theta &= {\pi \over {180}}\Delta \theta ^\circ \end{aligned}\]
所以:
\[\begin{aligned} \Delta s &= \Delta \theta R \newline {360^\circ } &= 2\pi \end{aligned}\]
切线速度:
\[{v_T} = \frac{ds}{dt} = R\frac{d\theta}{dt} = \omega R\]
切线加速度:
\[{a_T} = \frac{d{v_T}}{dt} = R\frac{d\omega }{dt} = \alpha R\]
向心加速度:
\[{a_C} = \frac{v_T^2}{R} = {\omega ^2}R\]
转动刚体的动能公式:
\[K = \frac{1}{2}\sum\limits_i {m_iv_i^2} = \frac{1}{2}\sum\limits_i {m_iR_i^2\omega _i^2} = \frac{1}{2}I{\omega ^2}\]
从上式得出转动惯量:
\[I = \sum\limits_i {m_iR_i^2} \]
角动量:
\[L = I\omega \]
力矩:
\[\tau = \sum {F_iR_i} \sin {\theta _i} = \frac{dL}{dt} = I\alpha \]
向量:
\[\overrightarrow \tau = \overrightarrow r \times \overrightarrow F \]
转动刚体做功:
\[dW = \tau d\theta \]
物体的质心:
\[cm = \sum\limits_i {m_iR_i^2} \]
平衡轴定理:
\[I = {I_{cm}} + M{d^2}\]
\(I_{cm}\)为质心的转动惯量,\(M\)为物体的总质量,\(d\)为旋转轴到质心的距离。